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Surface viscosity and reorientation process in an asymmetric nematic cell

Rodolfo Teixeira de Souza*, Ervin Kaminski Lenzi and Luiz Roberto Evangelista

Departamento de Fisica, Universidade Estadual de Maringá, Avenida Colombo, 5790 87020-900 Maringá - PR, Brazil

(Received 24 June 2010; final version received 9 August 2010)

The influence of surface viscosity and anchoring energy on the reorientation process of a nematic liquid crystal
cell is theoretically investigated. The cell is a slab of thickness, d, whose limiting surfaces are characterised by
different anchoring strengths and present easy directions parallel to the bounding surfaces, changing with time
due to some external action. The exact space-time profile of the director angle is obtained by means of integral
transform techniques and a Green function approach. From this formalism, the time dependence of the optical
path difference is exactly determined and its behaviour is analysed in connection with the presence of surface
viscosity and different anchoring energies. The problem is also exactly solved in the presence of a constant electric
field. It is shown that the compatibility problem between the time derivative of the director field on the surface and
in the bulk can be avoided.
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1. Introduction

In recent years, several analyses have focused on the
role played by the surface viscosity in the dynamical
behaviour of nematic liquid crystal (NLC) cells [1–6].
This significant attention of the scientific community
is due in part to the importance of the problem in
display technology and, to a considerable extent, in
view of the important mathematical issues it raises
[7–12]. The concept of surface viscosity, introduced by
Derzhanskii and Petrov [13] to account for the surface
changes of the director with time, together with the
concept of anchoring energy, in the Rapini–Papoular
sense [14], form the usual framework to understand
surface properties connected with relaxation processes
of liquid-crystalline samples. In this scenario, the total
energy of the sample is composed of the elastic energy
corresponding to the deformation and the surface con-
tributions. The surplus of energy due to the presence
of the limiting surfaces, known as surface energy, has
two contributions. One contribution is related to the
broken symmetry of the nematic phase due to the pres-
ence of the surface, and is responsible for a reduced
interaction of the nematic molecules located in the sur-
face layer whose thickness is smaller than the range of
the molecular interactions responsible for the nematic
phase (the intrinsic contribution). The other contribu-
tions (the extrinsic contribution) is due to the direct
interaction between the nematic molecules and the
molecules of the substrate [15]. The equilibrium con-
figuration is found by minimising this total energy.
From the mathematical point of view, this implies
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the need to search for solutions of a torque balance
equation (bulk) subject to appropriate boundary con-
ditions, if the complete dynamical behaviour is the
scope of the analysis. In this regard, the influence of
the anchoring energy as well as the surface viscos-
ity on the relaxation process of a nematic cell have
been analysed by considering an imposed deformation
on the sample [12, 16]. In these works, the molecu-
lar orientation–reorientation process in a cell in the
shape of a slab of thickness, d, composed of two identi-
cal surfaces has been analysed. The space-time profile
of the director angle has been exactly determined by
means of a Green function method [16]. This kind of
analysis has lead to the conclusion that in the limit of
strong anchoring the influence of the surface viscosity
can be considered negligible.

In this paper, we re-examine the mathematical
problem discussed in [16] by considering a more gen-
eral situation in which the surfaces forming the slab
are not identical, i.e. by considering the problem
of a asymmetric cell having two different anchoring
strengths and different time-dependent easy axis dis-
tributions, which can be relevant to the phenomeno-
logical discussion of light-induced easy directions in
doped cells [17, 18]. Our twofold purpose is to analyse
the role of the asymmetric distribution of easy axes,
with boundary conditions involving the surface vis-
cosity, on the profile of the director angle, and also to
formulate the problem in a way that can, more gen-
erally than the preceding problems, still be tackled by
means of analytical methods even in the presence of
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1560 R.T. de Souza et al.

a constant electric field applied to the sample. As a
result, we offer a complete conceptual tool to obtain
the exact results for the profile of the director angle
and other experimentally measurable quantities such
as the optical path difference, whose exact tempo-
ral behaviour can be determined. In our analysis we
assume, as has been stated above, that the surface easy
axes are changing with time, whereas the anchoring
energy strengths related to these easy directions are
assumed to be time independent. In this framework,
the easy axis is defined as the nematic surface ori-
entation for which the surplus of energy due to the
limiting surface reaches its minimum value, for a uni-
form orientation of the nematic in the bulk. Since
we are assuming that the anchoring energy strength
is time independent, the orientation of the nematic
molecules in the surface layers does not change dur-
ing the modification of the easy axis. This implies that
the easy axes have to be varied mechanically, turning
the limiting surfaces with respect to the initial posi-
tion. To the best of our knowledge, experiments of this
type have not been performed until now. We hope that
our paper will stimulate research in this direction, thus
permitting us to compare our theoretical prediction
with the experimental results. Recently, the modifica-
tion of the easy axes induced by the interaction of the
light with nematic liquid crystals doped with dyes has
been discussed [17–24]. In these types of experiment,
the easy axis is changed by inducing an adsorption
and a structural transformation of the dye dissolved in
the liquid crystal. The adsorption and the structural
transformations of the molecules of dye are related
to two different characteristic times. This means that
the density of the molecules of the dyes responsible
for the anchoring energy, and their orientation that is
responsible for the easy axis, change with irradiation
time. Consequently, the easy axis and the anchoring
energy strength change with time [20]. This case can-
not be described by means of our theoretical model.
An extension of the model to describe the experiment
reported in [18] is under way, and will be published
elsewhere.

The paper is organised as follows. In Section 2,
the statement of the problem is presented, introduc-
ing the temporally dependent asymmetric easy axis
distributions in such a manner as to mathematically
formulate the problem in general terms. In Section 3,
the Green function approach is developed to obtain
the exact solution for the space-time profile of the
director angle. In Section 4, some theoretical results
for the time derivative of the director angle and for
the optical path difference are presented for a relevant
set of parameters characterising a typical NLC sam-
ple. In Section 5, the effect of an external, constant,
electric field on the relaxation behaviour of the system

is considered. Finally, in Section 6, some concluding
remarks are presented.

2. Statement of the problem

The sample is an NLC cell in the shape of a slab
of thickness d in such a manner that the z-axis of a
Cartesian reference frame is normal to the bounding
walls placed at z = ±d/2. The twist angle formed by
the nematic director, n, with the x-axis, characterising
the nematic deformation, is indicated by φ, and the
one-elastic constant approximation is assumed. The
dynamics of the director angle in the cell is governed
by the equation arising from the balance condition
between the elastic and viscous torque [25]:

ηb
∂

∂t
φ(z, t) = K

∂2

∂z2
φ(z, t), (1)

where K is the elastic constant and ηb is the (effective)
bulk viscosity. The equilibrium profile of the director
angle has to be found satisfying the boundary con-
ditions stating the elastic torque transmitted by the
liquid crystal to the limiting surface is balanced by
the restoring torque due to the anisotropic interaction
of the nematic molecules with the surface and by the
viscous torque, due to the surface dissipation, namely

±K
∂

∂z
φ(z, t) + W± [φ(z, t) − φs,±(t)]

+ ηs
∂

∂t
φ(z, t)

∣∣∣∣
z=±d/2

= 0, (2)

where ηs is the surface viscosity [13]. In Equation (2),
the parabolic approximation for the Rapini–Papoular
surface anchoring energy is assumed, i.e. f s,± =
(1/2)W±[φ(t) – φs,±(t)]2, where W± (signs + and –
refer to the surfaces located at d/2 and –d/2, respec-
tively) are the anchoring energy strengths [15] and
φs,±(t) are the surface easy axes characterising the two
surfaces of the sample. In addition, we assume that the
easy axes change with time, due to the presence of an
external action [19–24], according to the laws

φs,±(t ≤ 0) = φi,±, and

φs,±(t) = φf,± + (φi,± − φf,±)e−t/τ±, (3)

where i (f) stands for initial (final) and τ± are the typ-
ical characteristic times related to the external action
on the aligning surfaces. The easy directions of the
kind represented by Equation (3) can by mechani-
cally or optically induced in the system. In the case
of photo-induced alignment, azo-dye dopants can also
come into play and time-dependent variations in the
easy directions result from the illumination process
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Liquid Crystals 1561

[17, 18]. From Equation (3), it follows that the initial
director profile is

φ(z, 0) = Ai + Bi z. (4)

The final form of the director profile may be
obtained by considering that limt→∞ φs,±(t) = φf,±
for the boundary conditions, which leads us to the
stationary solution, i.e. limt→∞φ(z, t) = φest(z):

φest(z) = Af + Bf z, (5)

with

Ai(f) = u+ (1 + u−/2) φi(f),+ + u− (1 + u+/2) φi(f),−
u+ (1 + u−/2) + u− (1 + u+/2)

,

Bi(f) = 2
d

u+u−
(
φi(f),+ + φi(f),−

)
u+ (1 + u−/2) + u− (1 + u+/2)

(6)

where u± = W± d/K are the reduced anchoring ener-
gies and φi,± = (φi,+, φi,–).

For t ≤ 0, the profile of the director angle is given
by Equation (4). Therefore, from Equations (1) and
(2), it follows that

(
∂φ

∂t

)
surface,t=0

=
(

∂φ

∂t

)
bulk,t=0

= 0, (7)

i.e. there is no incompatibility between the time deriva-
tive of the director angle on the surface evaluated by
means of the bulk equation, Equation (1), and by
means of the boundary conditions, Equations (2), at
t = 0, as discussed in [16].

3. The Green function approach

To proceed, we write Equations (1) and (2) in the
dimensionless form, as usual, to obtain

∂

∂tr
φ(zr, tr) = ∂2

∂z2
r
φ(zr, tr), (8)

and

± ∂

∂zr
φ(zr, tr) + u±[φ(zr, tr) − φs,±(tr)]

+υ
∂

∂tr
φ(zr, tr)

∣∣zr=±1/2 = 0,
(9)

respectively, with zr = z/d, tr = t/τD, τr,± = τ±/τD

and υ = ηs/(ηbd), where τD = ηb d2/K is the dif-
fusion time. The next step is to use the Laplace
transform L{· · ·} = ∫ ∞

0 dtre−str · · · and L−1{· · ·} =
1

2π i

∫ γ+i∞
γ−i∞ ds estr · · ·, and the Green function approach

to obtain a solution of Equation (8). This task can
be easily accomplished if we consider first an initial
condition for Equation (8), 	0(z) = φ(z, 0), given by
Equation (4). Laplace transforms of Equations (8)
and (9) yield, respectively,

d2

dz2
r
φ(zr, s) − sφ(zr, s) = −	0(zr) (10)

and

± d
dzr

φ(zr, s) + (u± + υs)φ(zr, s)
∣∣zr=±1/2

= υ	0(zr)
∣∣zr=±1/2 + uφs,± (s).

(11)

The Green function of the problem related to
Equations (10) and (11) is a solution of the differential
equation

d2

dz2
r
G(zr, zr,′ ; s) − sG(zr, z′

r; s) = δ(zr − z′
r) (12)

with boundary conditions

± d
dzr

G(zr, z′
r; s) + (u± + υs)G(zr, z′

r; s)
∣∣zr=±1/2 = 0.

(13)

Now, by using the Green function approach the solu-
tion of Equation (10) may be written as

φ(z′
r, s) = −

∫ 1/2

−1/2
dzr	0(zr)G(zr, z′

r, s)

− [υ	0(zr) + u+φs,+(s)]G(zr, z′
r, s)

∣∣zr=1/2

− [υ	0(zr) + u−φs,−(s)]G(zr, z′
r, s)

∣∣zr=−1/2.
(14)

After performing integration of the initial condition
and the substitution of zr = −1/2 in the second term,
one has to replace z′

r by zr, to obtain φ(zr, s), i.e. the
director profile in the Laplace space.

The first term present in Equation (14) gives the
time evolution of the initial condition, 	0(zr), intro-
duced in Equation (10), and the remaining terms are
surface terms. To write the solution in this general
form is a convenient way to understand how the sur-
face conditions influence the time evolution of the
initial condition. After some calculations, it is possible
to show that
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1562 R.T. de Souza et al.

G(zr, z′
r, s) = − 1√

sF(s)

{√
s cosh

[√
s
(

1
2

+ zr

)]

+ (u− + υs) sinh
[√

s
(

1
2

+ zr

)]}

×
{√

s cosh
[√

s
(

1
2

− z′
r

)]

+(u+ + υs) sinh
[√

s
(

1
2

− z′
r

)]}
,

(15)

for −1/2 ≤ zr < z′
r, and

G(zr, z′
r, s) = − 1√

sF(s)

{√
s cosh

[√
s
(

1
2

+ z′
r

)]

+ (u− + υs) sinh
[√

s
(

1
2

+ z′
)]}

×
{√

s cosh
[√

s
(

1
2

− zr

)]

+(u+ + υs) sinh
[√

s
(

1
2

− zr

)]}
,

(16)

for z′
r < zr ≤ 1/2, where

F(s) = [s + (u+ + υs)(u− + υs)] sinh(
√

s)

+ √
s(u+ + u− + 2υs) cosh(

√
s).

(17)

Equations (14), (15) and (16) represent the solution of
Equation (8) in the Laplace space. In order to get the
inverse Laplace transform, we need to close a contour
of the integral in the complex space on the poles of
F(s) which appear after taking s = −k2

n, leading us to
the eigenvalue equation

[(u+ − υk2
n)(u− − υk2

n) − k2
n] sin(kn)

+ kn(u+ + u− − 2υk2
n) cos (kn) = 0.

(18)

By performing the inverse Laplace transform of
Equations (15) and (16), we obtain

G(zr, z′
r; tr) = −

∞∑
n=1

e−k2
ntr

knF̃(kn)

{
kn cos

[
kn

(
1
2

+ zr

)]

+ (u− − υk2
n) sin

[
kn

(
1
2

+ zr

)]}

×
{

kn cos
[

kn

(
1
2

− z′
r

)]

+(u+ − υk2
n) sin

[
kn

(
1
2

− z′
r

)]}
,

(19)

for −1/2 ≤ zr < z′
r, and

G(zr, z′
r; tr) = −

∞∑
n=1

e−k2
ntr

knF̃(kn)

{
kn cos

[
kn

(
1
2

+ z′
r

)]

+ (u− − υk2
n) sin

[
kn

(
1
2

+ z′
r

)]}

×
{

kn cos
[

kn

(
1
2

− z′
r

)]

+(u+ − υk2
n) sin

[
kn

(
1
2

− z′
r

)]}
,

(20)

for z′
r < zr ≤ 0, where

F̃(kn) = 1
2kn

[k2
n(1 + υ(6 + u+ + u− − uk2

n))

− u+(1 + u−) − u−] cos(kn) + 1
2

[2 + u+ + u−

+ 2(u+ + u− − k2
n) − 4k2

nυ
2] sin (kn). (21)

The inverse Laplace transform of Equation (14) is

φ(z′
r, t) = −

∫ 1/2

−1/2
dzr	0(zr)G(zr, z′

r, t) − υ[	0(zr)|zr=1/2G̃+(z′
r, t)

+ 	0(zr)|zr=−1/2G̃−(z′
r, t)]−

∫ t

0
dt′[u+φs,+(t′)G̃+(z′

r, t−t′)

+ u−φs,−(t′)G̃−(z′
r, t − t′)], (22)

with G̃±(z′
r, tr) = G(zr, z′

r, tr)|zr=±1/2. Substituting the
initial condition given by Equation (4), it is possible to
investigate the influence of the surface viscosity on the
relaxation process of the director angle when the sur-
face easy axis is changing according to Equation (3).
This completes the process of obtaining exact solu-
tions for the problem stated in Section 2.

4. Relaxation and surface viscosity

In Figure 1(a), the behaviour of φ(zr, tr) is shown ver-
sus zr for different values of tr to illustrate the time
evolution of the profile of the director angle. The
asymmetry in the spatial distribution of the director
is evident for intermediate times, i.e. between the ini-
tial and the final states. The relaxation of the solution
for the considered set of parameters in Figure 1(b) is
also evident, where the profile of the director angle is
shown for two different values of the reduced surface
viscosity. Notice that these values correspond to a ratio
surface to bulk viscosity ηs/ηb = υd of the order of
micrometres for typical NLC cells (d ≈ 1 μm) and they
can be considered as very high when compared with
the values employed in [2], which are of the order of
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nanometres. In addition, the two illustrative values we
are using for the reduced anchoring energy correspond
to d = 10L and d = L, where L is a typical extrapo-
lation length. These values represent, respectively, an
almost strong (u = 10) and a relatively weak (u = 1)
anchoring situation.

Once the exact profile of the director angle is
obtained, other measurable physical properties of the
NLC sample can be explored. For instance, in the case
in which a linear polarised beam impinges normally
on the nematic sample, the optical path difference �l,
between the ordinary and the extraordinary ray, is
given by [26]

�l =
∫ d/2

−d/2
�n(φ) dz,

�n(φ) = neff(φ) − no = no

⎧⎨
⎩

1√
1 − r sin2(φ)

− 1

⎫⎬
⎭ ,

(23)

with r = 1−(no/ne)2, where no and ne are the ordi-
nary and extraordinary refractive indices, respectively.
Using the results obtained in Section 4, the time
dependence of �l can be obtained by means of [23]
and some representative situations will be illustrated.

The time dependence of the time derivative of the
director angle, at zr = 0.1, is shown in Figure 2(a) for
two different values of the dimensionless surface vis-
cosity υ = ηs/(ηbd) and for significant values of the
reduced anchoring energy u± = W± d/K , which rep-
resent a relatively strong anchoring situation for the
surface placed at z = d/2 (u+ = 10) and a very weak
anchoring at z = −d/2 (u− = 1). Even if for short
times the behaviours of the director angle are similar
for small (υ = 0.1) and large (υ = 1.0) values of the
surface viscosity, the large time behaviour is very dif-
ferent. The relaxation behaviour of the system toward
the stationary configuration of the director angle can
be fast or slow according to whether the surface vis-
cosity is small or large. The optical path difference
exhibited in Figure 2(b) is shown to be highly sensitive
to the variations of υ, demonstrating its influence on
the measurable physical quantities characterising the
sample.

The relaxation process is therefore strongly depen-
dent on the strength of the surface viscosity and is also
affected by the relaxation times characterising the easy
axes at the surfaces, as can be seen from Figure 3(a),
where the quantity φ̇(zr, tr)|zr=0.1 is shown. In Figure
3(b), we explore the behaviour of the reduced optical
path difference for a set of contrasting characteris-
tic times of the easy axis distribution at the surfaces.

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

φ(
Z

r,t
r)

(a)

tr=∞

tr=1.0

tr=0.3

tr=0.1

tr=0

−0.4 −0.2 −0.0 −0.2 −0.4

Zr
φ(

Z
r,t

r)|
z r

=0
.1

φ(Zr,tr)|zr=0.1, tr=0

φ(Zr,tr)|zr=0.1, tr=∞

tr

1.4

1.3

1.2

1.1

1.0

0.9

(b)

v = 0.1

v = 1.0

0 1 2 3

Figure 1. (a) φ(zr, tr) versus zr for different values of tr and
υ = 0.1 to illustrate the time evolution of the director profile.
The dotted lines represent the director profile for different
values of tr from the initial condition to the stationary situa-
tion (solid lines). (b) φ(zr, tr)

∣∣
zr=0.1 versus tr for two different

values of υ to illustrate the influence of the viscosity on the
time evolution of the director profile from the initial condi-
tion to a stationary situation (dotted lines). The curves have
a horizontal slope at the origin. For both cases, we consider,
for simplicity, u+ = 10, u− = 1, φi,+ = 1, φi,− = 0.5, φf,+ =
1.5, φf,− = 0.9, τr,+ = 0.01 and τr,− = 0.05 .
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(a)

v=0.1

v=1.0

10−1

10−2

10−3

0 1 2 3
tr

Δl
/(

n 0
d)

Δl/(n0d)|t=∞

Δl/(n0d)|t=0

v=0.1

v=1.0

0.105

0.100

0.095

0.090

0.085

0.080

0 1 2 3
tr

(b)

Figure 2. (a) φ̇(zr, tr)|zr = 0.1 versus tr and (b) �l/n0d ver-
sus tr for two different values of υ. The curves were drawn
for the parameters u+ = 10, u− = 1, φi,+ = 1, φi,− = 0.8,
φf,+ = 1.2, φf,− = 1 and τ r,+ = τ r,− = 0.02.

τ+,r = 0.02, τ−,r = 0.02

τ+,r = 0.02, τ−,r = 0.2

τ+,r = 0.2, τ−,r = 0.02

τ+,r = 0.2, τ−,r = 0.2
0.1

0.01

1E-3

1 2 3 4 5

tr

(a)

τ+,r = 0.02, τ−,r = 0.02

τ+,r = 0.02, τ−,r = 0.2

τ+,r = 0.2, τ−,r = 0.02

τ+,r = 0.2, τ−,r = 0.2

tr

(b)
Δl/(n0d)|t=0

Δl/(n0d)|t=∞

0.100

0.095

0.090

0.085

0.080

0 1 2 3

Δl
/(

n 0
d)

Figure 3. (a)φ̇(zr, tr)|zr = 0.1 versus tr and (b) �l/n0d versus
tr for different values of τ r,+ and τ r,−. The other parameters
are u+ = 10, u−=1, φi,+ = 1, φi,− = 0.8, φf,+ = 1.2, φf,− = 1
and υ = 1.0 (colour version online).
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As expected, this quantity is directly affected by the
variations of the characteristic times and changes
monotonically between two limiting values corre-
sponding to the initial and stationary configurations.

In the same direction, the influence of the anchor-
ing energy on the relaxation process can be appreciated
in Figure 4(a). At a first glance, Figures 2(a) and
4(a) have similar trends. However, while Figure 4(a)
shows that the relaxation process is fast for large val-
ues of the reduced anchoring, Figure 2 exhibits a fast
behaviour for small values of the surface viscosity.
Accordingly, the slow relaxation behaviour is exhib-
ited for small values of the anchoring strength (i.e. for
weak anchoring) and for large values of the surface vis-
cosity. As is evident from Figure 4(b), the optical path
difference is also strongly affected by the asymmetry
in the conditions of the surfaces limiting the sample.

5. Electric field effect

Let us now investigate the effects produced on the
relaxation of the system by a constant electric field
applied to the sample. In particular, the results found
below may be useful to analyse the system subjected to
a time-dependent field [12] for time intervals that are
very small when compared to the typical characteris-
tic times related to relaxation of the electric field. In
this context, the equation to be considered, in dimen-
sionless form, to obtain the behaviour of the twist
angle in the presence of a constant electric field is given
by

∂

∂tr
φE (zr, tr) = ∂2

∂z2
r
φE (zr, tr) − 1

λ2
φE (zr, tr) , (24)

where λ = 1/E0

√
k/

(
εad2

)
. The external field consid-

ered here is E = E0z and the dielectric anisotropy
of the NLC is assumed to be positive (εa = ε|| −
ε⊥, where || and ⊥ refer to n). Note also that
Equation (24) is obtained in the context of the
small-angle approximation with weak fields. For this
reason, we consider in our analysis that λ >> 1,
which corresponds to weak fields. Equation (24) has
to be solved by considering the boundary condi-
tions given by Equation (9), which contain the effect
of the surface viscosity on the director angle. In
order to avoid the problem of compatibility between
the time derivative of the director angle on the
surface and in the bulk, we consider the initial
condition

	E,i(zr) = AE,iez/λ + BE,ie−z/λ, (25)

10−1

10−2

10−3

0 1 2 3
tr

(a)

u+= 1, u−= 0.1

u+= 10, u−= 1

tr

Δl
/(

n 0
d)

(b)

0.100

0.105

0.095

0.090

0.085

0.080

u+= 1, u−= 1

u+= 1, u−= 0.1

0 1 2 3 4 5

Figure 4. (a) φ̇(zr, tr)|zr = 0.1 versus tr and (b) �l/n0d ver-
sus tr for two different values of u+ and u−. These curves
were drawn for φi,+ = 1, φi,− = 0.8, φf,+ = 1.2, φf,− = 1, υ =
1 and τ r,+ = τ r,− = 0.02.
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with

AE,i(f) = u+λ(1 + u−λ)φi(f),+e
1

2λ + u−λ(1 + u+λφi(f),−)e− 1
2λ

(1 + u−λ)(1 + u+λ)e
1
λ − (1 − u−λ)(1 − u+λ)e− 1

λ

,

BE,i(f) = u−λ(1 + u+λ)φi(f),−e
1

2λ + u+λ(1 + u−λφi(f),+)e− 1
2λ

(1 + u−λ)(1 + u+λ)e
1
λ − (1 − u−λ)(1 − u+λ)e− 1

λ

.

(26)

Equation (25) is obtained by solving the equation

d2

dz2
r
	E(zr) − 1

λ2
	E(zr) = 0, (27)

with the boundary condition

± d
dzr

	E(zr) + u±(	E(zr) − φi,±)

∣∣∣∣
zr=±1/2

= 0. (28)

Similarly to the previous case, discussed in the absence
of an electric field, we have a stationary configuration
of the director angle which is given by

	E,f (zr) = AE,fez/λ + BE,fe−z/λ. (29)

It is worth mentioning that the initial condition given
by Equation (25) satisfies the condition of compati-
bility given by Equation (7), i.e. for t = 0 the time
derivative of the director angle on the surface and in
the bulk are the same.

Following the procedure employed in Section 3, we
use the Green function approach to solve Equation
(24). After some calculations, it is possible to show that
the solution for this case is given by

φE(z′
r, t) = −

∫ 1/2

−1/2
dzr	E(zr)G(zr, z′

r, t)e−t/λ2

−
∫ t

0
dt′e−(t−t′)/λ2 [

u+φs,+(t′)G̃E,+(z′
r, t − t′)

+ u−φs,−(t′)G̃E,−(z′
r, t − t′)

]

− υ
[
	E(zr)|zr= 1

2
G̃E,+(z′

r, t)

+	E(zr)|zr=− 1
2
G̃E,−(z′

r, t)
]

, (30)

with G̃E,±(z′
r, tr) = GE(zr, z′

r, tr)
∣∣∣
zr=±1/2

and the Green

function is given by

GE (zr, z′
r; tr) = −

∞∑
n=1

e−k2
ntr

knF̃(kn)

{
kn cos

[
kn

(
1
2

+ zr

)]

+
(

u− − υ

λ2
− υk2

n

)
sin

[
kn

(
1
2

+ zr

)]}

×
{

kn cos
[

kn

(
1
2

− z′
r

)]

+
(

u+ − υ

λ2 − υk2
n

)
sin

[
kn

(
1
2

− z′
r

)]}
,

(31)

for −1/2 ≤ zr < z′
r, and

GE(zr, z′
r; tr) = −

∞∑
n=1

e−k2
ntr

knF̃ (kn)

{
kn cos

[
kn

(
1
2

+ z′
r

)]

+
(

u− − υ

λ2 − υk2
n

)
sin

[
kn

(
1
2

+ z′
r

)]}

×
{

kn cos
[

kn

(
1
2

− z′
r

)]

+
(

u+ − υ

λ2 − υk2
n

)
sin

[
kn

(
1
2

− z′
r

)]}
,

(32)

for z′
r < zr ≤ 0, where

F̃E(kn) = 1
2kn

[
k2

n

(
1 + υ

(
6 + u+ + u− − 2

λ2 − υk2
n

))

−
(

u+ − 1
λ2

)(
1 + u− − 1

λ2

)
+ 1

λ2 − u−
]

cos(kn)

+ 1
2

[
2 + u+ + u− − 2

λ2

+ 2
(

u+ + u− − 2
λ2 − k2

n

)
− 4k2

nυ
2
]

sin(kn).

(33)

The kn are obtained from the equation

(U+U− − k2
n

)
sin (kn) + kn (U+ + U−) cos (kn) = 0,

(34)

where U+ = u+ − υ/λ2 − υk2
n and U− = u− − υ/λ2 −

υk2
n.
Figure 5(a) shows the profile for different times in

order to illustrate the effect produced by the electric
field. The system relaxes from an initial configuration
given by Equation (25) to a stationary configuration
which is given by Equation (29). In Figure 5(b), we
illustrate the behaviour of the time derivative of the
director angle in the presence and in the absence of
an electric field for an arbitrary value of υ. Note that
for small times, i.e. tr 
 1, Figure 5(b) shows that the
effect of the electric field is not verified as compared
to the situation where it is absent (long dashed line).
This feature may be an indication that considering an
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Figure 5. (a) φE(zr, tr) versus zr for different values of tr and
λ = 1 to illustrate the time evolution of the director profile.
The dotted lines represent the director profile for different
values of tr from the initial condition to the stationary situ-
ation (solid lines). (b) φ̇E(zr, tr)|zr=0.1 versus tr for λ = 1, λ =
1.5, and λ = ∞ to illustrate the influence of the electric field
on the relaxation of the director profile. For both cases, we
consider, for simplicity, u+ = 10, u− = 1, φi,+ = 1, φi,− = 0.5,
φf,+ = 1.5, φf,− = 0.9, τ r,+ = 0.2, υ = 1 and τ r,− = 0.1 (colour
version online).

electric field with a small characteristic time is useful
so as to avoid the compatibility problem between the
time derivative of the director angle on the surface and
in the bulk, as discussed in [7–10], without significant
changes on the relaxation of the profile.

6. Concluding remarks

These fundamental equations and the exact results
we have obtained permit us to develop the entire
analysis of the dynamics of the molecular orientation–
reorientation in a cell characterized by time-dependent
boundary conditions, taking into account the effect
of the surface viscosity and the anchoring energy.
This analysis we have presented is a quite general
approach to face the problem of interpreting exper-
imental results for which the consideration of the
role of surface viscosity is relevant. In addition, our
approach shows that an incompatibility of the ini-
tial derivative of the director angle on the bounding
surface does not arise when it is deduced from the
bulk or from the surface dynamic equations, because
the problem is stated in such a manner so that the
appropriate initial conditions on this first derivative
are considered. The exact Green function approach we
have developed permits us to obtain a closed expres-
sion for the space-time profile of the director angle
and for the temporal dependence of the optical path
difference of a typical NLC cell. All these calcula-
tions have been performed by taking into account easy
axis distributions that are time dependent. This kind
of analysis can find applications in liquid-crystalline
systems for which light-induced easy directions are
induced in view of the presence of dyes. In the anal-
ysis presented above, the anchoring energies have been
assumed to be time independent. In the case where
the easy direction is modified optically, the anchoring
energy strengths also depend on time. In this frame-
work, the analysis reported above has to be modified
by taking into account in the boundary conditions in
Equation (2) that also W± = W± (t), in such a man-
ner that the time evolution of the nematic orientation
is continuous in time, without discontinuity at the bor-
der. Work is in progress along these lines and will be
published elsewhere.

Acknowledgements

We are grateful to Giovanni Barbero (Italy) for very
fruitful discussions. This work was partially supported
by the National Institutes of Science and Technology
in Complex Systems (E.K. Lenzi) and Complex Fluids
(L.R. Evangelista), CNPq, Brazil.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1568 R.T. de Souza et al.

References

[1] Petrov, A.G.; Ionescu, A.Th.; Versace, C.; Scaramuzza,
N. Liq. Cryst. 1995, 19, 169–178.

[2] Mertelj, A.; Copic, M. Phys. Rev. Lett. 1998, 81,
5844–5847.

[3] Faetti, S.; Nobili, M.; Raggi, I. Eur. Phys. J.B 1999, 11,
445–453.

[4] Marinov, Y.; Shonova, N.; Versace, C.; Petrov, A.G.
Mol. Cryst. Liq. Cryst. 1999, 329, 533–538.

[5] Marinov, Y.; Shonova, N.; Naydenova, N.; Petrov, A.G.
Mol. Cryst. Liq. Cryst. 2000, 351, 411–417.

[6] Mertelj, A.; Copic, M. Phys. Rev. E 2000, 61,
1622–1628.

[7] Durand, G.E.; Virga, E.G. Phys. Rev. E 1999, 59,
4137–4142.

[8] Sonnet, A.; Virga, E.G.; Durand, G.E. Phys. Rev. E
2000, 62, 3694–3701.

[9] Barbero, G.; Dahl, I.; Komitov, L. J. Chem. Phys. 2009,
130, 174902

[10] Barbero, G.; Pandolfi, L. Phys. Rev. E 2009, 79, 051701.
[11] Alexe-Ionecu, A.L.; Barbero, G.; Komitov, L. Phys.

Rev. E 2009, 77, 051701.
[12] Lenzi, E.K.; Barbero, G. Eur. Phys. Lett. 2009, 88,

58003.
[13] Derzhanskii, A.I.; Petrov, A.G. Acta Phys. Pol. A 1979,

55, 747.
[14] Rapini, A.; Papoular, M.J. Phys. (Paris), Colloq. 1969.

30, C4–54.
[15] Sonin, A.A. The Surface Physics of Liquid Crystals;

Gordon and Breach: Philadelphia, 1995.

[16] Barbero, G.; Lenzi, E.K. Phys. Lett. A 2010, 374,
1565–1569.

[17] Alexe-Ionescu, A.L.; Uncheselu, C.; Lucchetti, L.;
Barbero, G. Phys. Rev. E 2007, 75, 021701.

[18] Fedorenko, D.; Slyusarenko, K.; Ouskova, E.;
Reshetnyak, V.; Ha, K.; Karapinar, R.; Reznikov,
Y. Phys. Rev. E 2008, 77, 061705.

[19] Pieranski, P.; Jerome, B.; Gabay, M. Mol. Cryst. Liq.
Cryst. 1990, 179, 285–315.

[20] Kuksenok, O.V.; Shianovskii, S. Mol. Cryst. Liq. Cryst.
2001, 359, 427–438.

[21] Janossy, I. Phys. Rev. E 1994, 49, 2957–2963.
[22] Francescangeli, O.; Slussarenko, S.; Simoni, F.;

Andrienko, D.; Reshetnyak, V.; Reznikov, Y. Phys. Rev.
Lett. 1999, 82, 1855–1858.

[23] Ouskova, E.; Fedorenko, D.; Reznikov, Y.;
Shiyanovskii, S.V.; Su, L.; West, J.L.; Kuksenok,
O.V.; Francescangeli, O.; Simoni, F. Phys. Rev. E 2001,
63, 021701.

[24] Ouskova, E.; Reznikov, Y.; Shiyanovskii, S.V.; Su, L.;
West, J.L.; Kuksenok, O.V.; Francescangeli, O.; Simoni,
F. Phys. Rev. E 2001, 64, 051709.

[25] Virga, E.G. Variational Theories for Liquid Crystals;
Chapman and Hall: London, 1994.

[26] Barbero, G.; Barberi, R. In The Physics of Liquid
Crystalline Materials: Khoo, I.C., Simoni, F., Eds.;
Gordon and Breach: London, 1988.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


